Search results for "overdetermined problem"

showing 10 items of 11 documents

Serrin-Type Overdetermined Problems: an Alternative Proof

2008

We prove the symmetry of solutions to overdetermined problems for a class of fully nonlinear equations, namely the Hessian equations. In the case of the Poisson equation, our proof is alternative to the proofs proposed by Serrin (moving planes) and by Weinberger. Moreover, our proof makes no direct use of the maximum principle while it sheds light on a relation between the Serrin problem and the isoperimetric inequality.

Hessian equationMechanical EngineeringMathematical analysisMathematics::Analysis of PDEsHessian equationType (model theory)isoperimetric inequalityMathematical proofOverdetermined systemNonlinear systemMathematics (miscellaneous)Maximum principleSettore MAT/05 - Analisi Matematicasymmetry of solutionsOverdetermined problemApplied mathematicsIsoperimetric inequalityPoisson's equationAnalysisMathematicsArchive for Rational Mechanics and Analysis
researchProduct

Hölder stability for Serrin’s overdetermined problem

2015

In a bounded domain \(\varOmega \), we consider a positive solution of the problem \(\Delta u+f(u)=0\) in \(\varOmega \), \(u=0\) on \(\partial \varOmega \), where \(f:\mathbb {R}\rightarrow \mathbb {R}\) is a locally Lipschitz continuous function. Under sufficient conditions on \(\varOmega \) (for instance, if \(\varOmega \) is convex), we show that \(\partial \varOmega \) is contained in a spherical annulus of radii \(r_i 0\) and \(\tau \in (0,1]\). Here, \([u_\nu ]_{\partial \varOmega }\) is the Lipschitz seminorm on \(\partial \varOmega \) of the normal derivative of u. This result improves to Holder stability the logarithmic estimate obtained in Aftalion et al. (Adv Differ Equ 4:907–93…

Applied Mathematics010102 general mathematicsMathematical analysisRegular polygonSerrin’s problemFunction (mathematics)Directional derivativeLipschitz continuity01 natural sciencesDomain (mathematical analysis)010101 applied mathematicsOverdetermined systemCombinatoricsBounded functionOverdetermined problemHarnack’s inequalityStationary surface0101 mathematicsStabilityMethod of moving planeHarnack's inequalityMathematicsAnnali di Matematica Pura ed Applicata (1923 -)
researchProduct

Some overdetermined problems related to the anisotropic capacity

2018

Abstract We characterize the Wulff shape of an anisotropic norm in terms of solutions to overdetermined problems for the Finsler p-capacity of a convex set Ω ⊂ R N , with 1 p N . In particular we show that if the Finsler p-capacitary potential u associated to Ω has two homothetic level sets then Ω is Wulff shape. Moreover, we show that the concavity exponent of u is q = − ( p − 1 ) / ( N − p ) if and only if Ω is Wulff shape.

Pure mathematics0211 other engineering and technologiesConvex set02 engineering and technology01 natural sciencesHomothetic transformationOverdetermined systemMathematics - Analysis of PDEs35N25 35B06 35R25FOS: MathematicsConcavity exponent0101 mathematicsAnisotropyMathematics021103 operations researchCapacityApplied Mathematics010102 general mathematicsAnalysiWulff shapeAnisotropic normExponentOverdetermined problemMathematics::Differential GeometryAnalysisAnalysis of PDEs (math.AP)
researchProduct

Solutions of elliptic equations with a level surface parallel to the boundary: stability of the radial configuration

2016

A positive solution of a homogeneous Dirichlet boundary value problem or initial-value problems for certain elliptic or parabolic equations must be radially symmetric and monotone in the radial direction if just one of its level surfaces is parallel to the boundary of the domain. Here, for the elliptic case, we prove the stability counterpart of that result. We show that if the solution is almost constant on a surface at a fixed distance from the boundary, then the domain is almost radially symmetric, in the sense that is contained in and contains two concentric balls $${B_{{r_e}}}$$ and $${B_{{r_i}}}$$ , with the difference r e -r i (linearly) controlled by a suitable norm of the deviation…

Partial differential equationParallel surfaces overdetermined problems method of moving planes stability stationary surfaces Harnack’s inequality.General Mathematics010102 general mathematicsMathematical analysisPrimary 35B06 35J05 35J61 Secondary 35B35 35B09Concentric01 natural sciencesParabolic partial differential equationDirichlet distributionparallel surfaces; overdetermined problems; method of moving planes; stability; stationary surfaces; Harnack's inequality010101 applied mathematicssymbols.namesakeMathematics - Analysis of PDEsMonotone polygonHomogeneousSettore MAT/05 - Analisi MatematicaNorm (mathematics)FOS: MathematicssymbolsBoundary value problem0101 mathematicsAnalysisAnalysis of PDEs (math.AP)Mathematics
researchProduct

Characterization of ellipsoids through an overdetermined boundary value problem of Monge–Ampère type

2014

Abstract The study of the optimal constant in an Hessian-type Sobolev inequality leads to a fully nonlinear boundary value problem, overdetermined with non-standard boundary conditions. We show that all the solutions have ellipsoidal symmetry. In the proof we use the maximum principle applied to a suitable auxiliary function in conjunction with an entropy estimate from affine curvature flow.

Curvature flowApplied MathematicsGeneral MathematicsMathematical analysisFully nonlinear equationsAuxiliary functionEllipsoidSobolev inequalityOverdetermined systemMaximum principlesMaximum principleSettore MAT/05 - Analisi MatematicaAffine curvatureOverdetermined problemsEntropy (information theory)Boundary value problemMathematics
researchProduct

Wulff shape characterizations in overdetermined anisotropic elliptic problems

2017

We study some overdetermined problems for possibly anisotropic degenerate elliptic PDEs, including the well-known Serrin's overdetermined problem, and we prove the corresponding Wulff shape characterizations by using some integral identities and just one pointwise inequality. Our techniques provide a somehow unified approach to this variety of problems.

Applied Mathematics010102 general mathematicsDegenerate energy levelsMathematical analysisMathematics::Analysis of PDEsElliptic pdesComputer Science::Numerical Analysis01 natural sciencesMathematics::Numerical Analysis010101 applied mathematicsOverdetermined systemMathematics - Analysis of PDEsNonlinear Sciences::Exactly Solvable and Integrable SystemsSettore MAT/05 - Analisi MatematicaOverdetermined problems. Finsler manifold. Wulff shapes. Torsion problem. CapacityFOS: MathematicsMathematics::Differential GeometryFinsler manifold0101 mathematicsAnisotropyAnalysisAnalysis of PDEs (math.AP)Mathematics
researchProduct

Symmetry of minimizers with a level surface parallel to the boundary

2015

We consider the functional $$I_\Omega(v) = \int_\Omega [f(|Dv|) - v] dx,$$ where $\Omega$ is a bounded domain and $f$ is a convex function. Under general assumptions on $f$, G. Crasta [Cr1] has shown that if $I_\Omega$ admits a minimizer in $W_0^{1,1}(\Omega)$ depending only on the distance from the boundary of $\Omega$, then $\Omega$ must be a ball. With some restrictions on $f$, we prove that spherical symmetry can be obtained only by assuming that the minimizer has one level surface parallel to the boundary (i.e. it has only a level surface in common with the distance). We then discuss how these results extend to more general settings, in particular to functionals that are not differenti…

Surface (mathematics)Pure mathematicsGeneral MathematicsApplied MathematicsBoundary (topology)35B06 35J70 35K55 49K20Domain (mathematical analysis)overdetermined problems; minimizers of integral functionals; parallel surfaces; symmetryMathematics - Analysis of PDEsMinimizers of integral functionalSettore MAT/05 - Analisi MatematicaBounded functionFOS: MathematicsOverdetermined problemMathematics (all)Ball (mathematics)Circular symmetryDifferentiable functionConvex functionAnalysis of PDEs (math.AP)Mathematics
researchProduct

On the stability of the Serrin problem

2008

We investigate stability issues concerning the radial symmetry of solutions to Serrin's overdetermined problems. In particular, we show that, if $u$ is a solution to $\Delta u=n$ in a smooth domain $\Omega \subset \rn$, $u=0$ on $\partial\Omega$ and $|Du|$ is close to 1 on $\partial\Omega$, then $\Omega$ is close to the union of a certain number of disjoint unitary balls.

Applied MathematicsMathematical analysisSymmetry in biologyDisjoint setsUnitary stateStability (probability)Domain (mathematical analysis)Overdetermined systemSettore MAT/05 - Analisi MatematicaOverdetermined problemOverdetermined problemsStabilityAnalysisMathematics
researchProduct

Stability of radial symmetry for a Monge-Ampère overdetermined problem

2008

Recently the symmetry of solutions to overdetermined problems has been established for the class of Hessian operators, including the Monge-Ampère operator. In this paper we prove that the radial symmetry of the domain and of the solution to an overdetermined Dirichlet problem for the Monge-Ampère equation is stable under suitable perturbations of the data. © 2008 Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag.

Hessian matrixDirichlet problemoverdetermined problemMathematics::Complex VariablesApplied MathematicsMathematical analysisMathematics::Analysis of PDEsSymmetry in biologyMonge–Ampère equationMonge-Ampère equationComputer Science::Numerical AnalysisDomain (mathematical analysis)Symmetry (physics)Overdetermined systemsymbols.namesakeOperator (computer programming)Settore MAT/05 - Analisi MatematicasymbolsOverdetermined problemsStabilityIsoperimetric inequalityMathematics
researchProduct

The method of moving planes: a quantitative approach

2018

We review classical results where the method of the moving planes has been used to prove symmetry properties for overdetermined PDE's boundary value problems (such as Serrin's overdetermined problem) and for rigidity problems in geometric analysis (like Alexandrov soap bubble Theorem), and we give an overview of some recent results related to quantitative studies of the method of moving planes, where quantitative approximate symmetry results are obtained.

Mathematics - Differential Geometryoverdetermined problem010102 general mathematicsmean curvaturelcsh:QA299.6-43335N25; 35B35; 53A10; 53C24; 35B50; 35B51; 35J70alexandrov soap bubble theoremlcsh:Analysisstability01 natural sciencesAlexandrov Soap Bubble Theorem; overdetermined problems; rigidity; stability; mean curvature; moving planesMathematics - Analysis of PDEsrigidityDifferential Geometry (math.DG)Settore MAT/05 - Analisi Matematicaoverdetermined problemsFOS: Mathematics0101 mathematicsmoving planesAnalysis of PDEs (math.AP)
researchProduct